SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Shi) ;pers:(Zhang L.);srt2:(2019)"

Search: WFRF:(Wang Shi) > Zhang L. > (2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abudurexiti, A, et al. (author)
  • Taxonomy of the order Bunyavirales: update 2019
  • 2019
  • In: Archives of virology. - : Springer Science and Business Media LLC. - 1432-8798 .- 0304-8608. ; 164:7, s. 1949-1965
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • Clark, DW, et al. (author)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Journal article (peer-reviewed)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
4.
  • Zou, Haiyang, et al. (author)
  • Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler-Nordheim Tunneling
  • 2019
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:2, s. 2289-2297
  • Journal article (peer-reviewed)abstract
    • Silicon photonics is now widely accepted as a key technology in a variety of systems. But owing to material limitations, now it is challenging to greatly improve the performance after decades of development. Here, we show a high-performance broadband photodetector with significantly enhanced sensitivity and responsivity operating over a wide wavelength range of light from near-ultraviolet to near-infrared at low power consumption. The specially designed textured top ceiling electrode works effectively as an antireflection layer to greatly improve the absorption of near-infrared light, thereby overcoming the absorption limitation of near-infrared light. Instead of the conventional p-n junction and p-intrinsic-n junction, we introduce a similar to 15 nm thick alumina insulator layer between a p-type Si substrate and n-type ZnO nanowire (NW) arrays, which significantly enhances the charge carrier separation and collection efficiency. The photosensing responsivity and sensitivity are found to be nearly 1 order of magnitude higher than that of a reference device of p-Si/n-ZnO NW arrays, significantly higher than the commercial silicon photodiodes as well. The light-induced charge carriers flow across the appropriate thickness of insulator layer via the quantum mechanical Fowler-Nordheim tunneling mechanism. By virtue of the piezo-phototronic effect, the charge density at the interfaces can be tuned to alter the energy bands and the potential barrier distance for tunneling. Additionally, along with the use of incident light of different wavelengths, the influence of the insulator layer on the transport of electrons and holes separately is further investigated. The demonstrated concepts and study would lead to sensitivity improvement, quality enhancement of data transfer, decrease of power consumption, and cost reduction of silicon photonics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view